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Summary

= Scintillations observed in high-rate GPS signals provide a means of
studying ionospheric behavior beyond the resolution of EISCAT
incoherent scatter radar. At GPS frequencies (L1: 1575 MHz, L2:
1228 MHz), intermediate-scale irregularities (approximately 0.1-10
km) are responsible for diffractive scattering.

= Case study: the ionospheric electron density profile is observed by
EISCAT incoherent scatter radar (Tromsg) along the same line-of-
sight as a scintillating GPS signal

» EISCAT large-scale (10s of km) densities constrain a 3D irregularity
model with a multiple phase screen propagation algorithm.

» The observed signal is modeled and likely characteristics of the
underlying ionospheric irregularities are estimated
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Observational Approach

= Experiment at Tromsg (66.73 N, 102.18 E): EISCAT UHF antenna
aimed at GPS satellite PRN 23, beam tracking every 5 minutes.
Ground scintillation monitor takes 50 Hz observations

= Scintillations observed just after 20:00 UT (close to midnight
magnetic local time) on 17 October 2013
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Observations
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E-region density
enhancement occurs in the
auroral zone around midnight
MLT (20:05 UT).

Spike in the detrended 50 Hz
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No corresponding ion
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Observations

= Density enhancement associated with a phase spike but no observable
iIntensity

» 50 Hz data detrended using 3"-order polynomial and 6™"-order Butterworth
0.1-Hz high pass filter.

= Power spectral densities calculated using Welch’'s method with a Hamming
window, eight segments and a 50% overlap
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Modeling propagation
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= Satellite-beacon lonospheric
scintillation Global Model of the
upper Atmosphere (SIGMA) is
adapted here

» Deshpande et al. [2014] developed
the model and performed a
comprehensive parametric
sensitivity study
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= Multiple phase screens constructed SECR S

to represent signal scattering
caused by ionospheric irregularities /
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= Geometry modification: Z along yTm] Receiver
line-of-sight, effective drift velocity is Figure reproduced from
along Y Deshpande et al. [2014]
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Modeling irregularities

Field-aligned irregularity spectrum P(Kk) is based on the formulation of
Costa and Kelley [1977]:

P(k) = ay sin(3mly) / (4m°ky%) AN? - { (1 + (k.2 + k2 + a’k,?) / ky2)¥2 )2

k = (ke ky k;): spatial wave number vector, y: spectral index, a: axial ratio,
AN: root-mean-square density fluctuation, k,: outer scale wavenumber, z’:
magnetic field direction.

» Grid defined between 95-175 km altitude (110 — 200 km range)

= Mean electron density N specified to match EISCAT, but fractional
fluctuation density AN/N allowed to vary. Effective velocity set to 300 m/s,
X/Y extent is 3 km.

= We found a > 1 leads to intensity scintillation enhanced above what is
observed, so we set a = 1 and therefore y = 4.2 (matching observed
spectral value)

= Spectral irregularities do not reproduce large (3 radians p-2-p) spike, so
kilometer-scale irregularity added at 20:05:25

= 50 random realizations account for ‘chance’ variabiltiy
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Model irregularity configuration
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Model-Observation comparison
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Model-observation comparison

Models normalized at 0.1 Hz
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Conclusions

= AN/N is clearly not a constant in this case. Standard deviation varies
between 5 - 25 % of mean value specified by EISCAT

= Absence of intensity scintillation observed on line-of-sight
approximately 25° off B. This is explained as a consequence of high
spectral index (4.2) and low axial ratio (1:1)

= The new geometry dramatically reduces computation times to
approx. real time and reproduces the observations
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