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Summary 

 Scintillations observed in high-rate GPS signals provide a means of 
studying ionospheric behavior beyond the resolution of EISCAT 
incoherent scatter radar. At GPS frequencies (L1: 1575 MHz, L2: 
1228 MHz), intermediate-scale irregularities (approximately 0.1-10 
km) are responsible for diffractive scattering.  
 

 Case study: the ionospheric electron density profile is observed by 
EISCAT incoherent scatter radar (Tromsø) along the same line-of-
sight as a scintillating GPS signal 
 

 EISCAT large-scale (10s of km) densities constrain a 3D irregularity 
model with a multiple phase screen propagation algorithm.  
 

 The observed signal is modeled and likely characteristics of the 
underlying ionospheric irregularities are estimated 
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Observational Approach 

 Experiment at Tromsø (66.73 N, 102.18 E): EISCAT UHF antenna 
aimed at GPS satellite PRN 23, beam tracking every 5 minutes. 
Ground scintillation monitor takes 50 Hz observations 
 

 Scintillations observed just after 20:00 UT (close to midnight 
magnetic local time) on 17 October 2013 
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Observations 

 E-region density 
enhancement occurs in the 
auroral zone around midnight 
MLT (20:05 UT).  
 

 Spike in the detrended 50 Hz 
GPS carrier phase at the 
same time.  
 

  Line-of-sight velocities drop 
to ~100 m/s 
 

 Large (1500 K) electron 
temperature enhancement 
characteristic of electron 
precipitation  
 

 No corresponding ion 
temperature enhancement 
 



Space Exploration 

Observations 
 Density enhancement associated with a phase spike but no observable 

intensity 
 

 50 Hz data detrended using 3rd-order polynomial and 6th-order Butterworth 
0.1-Hz high pass filter.  
 

 Power spectral densities calculated using Welch’s method with a Hamming 
window, eight segments and a 50% overlap  
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Modeling propagation 

 Satellite-beacon Ionospheric 
scintillation Global Model of the 
upper Atmosphere (SIGMA) is 
adapted here 
 

 Deshpande et al. [2014] developed 
the model and performed a 
comprehensive parametric 
sensitivity study 
 

 Multiple phase screens constructed 
to represent signal scattering 
caused by ionospheric irregularities 
 

 Geometry modification: Z along 
line-of-sight, effective drift velocity is 
along Y 

 
 

 

Figure reproduced from 
Deshpande et al. [2014] 
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Modeling irregularities 

Field-aligned irregularity spectrum P(k) is based on the formulation of 
Costa and Kelley [1977]: 
  P(k) = a γ sin(3π/γ) / (4π2k0

3) ΔN2 ∙ { (1 + (kx’
2 + ky’

2 + a2kz’
2) / k0

2 )-γ/2 }-1 

k = (kx’ ky’ kz’): spatial wave number vector, γ: spectral index, a: axial ratio, 
ΔN: root-mean-square density fluctuation, k0: outer scale wavenumber, z’: 
magnetic field direction.  
 
 Grid defined between 95-175 km altitude (110 – 200 km range) 
 Mean electron density N specified to match EISCAT, but fractional 

fluctuation density ∆N/N allowed to vary. Effective velocity set to 300 m/s, 
X/Y extent is 3 km.  

 We found a > 1 leads to intensity scintillation enhanced above what is 
observed, so we set a = 1 and therefore γ = 4.2 (matching observed 
spectral value) 

 Spectral irregularities do not reproduce large (3 radians p-2-p) spike, so 
kilometer-scale irregularity added at 20:05:25 

 50 random realizations account for ‘chance’ variabiltiy 
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Model irregularity configuration 

Observed 
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Model-Observation comparison 

σp obs = 0.23 
σp mod= 0.23 ± 0.04  
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Model-observation comparison 
Models normalized at 0.1 Hz 
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Conclusions 

 ∆N/N is clearly not a constant in this case. Standard deviation varies 
between 5 - 25 % of mean value specified by EISCAT 
 

 Absence of intensity scintillation observed on line-of-sight 
approximately 25o off B. This is explained as a consequence of high 
spectral index (4.2) and low axial ratio (1:1) 
 

 The new geometry dramatically reduces computation times to 
approx. real time and reproduces the observations 
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