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Large Area Ocean Measurements 

• HF Ocean Scatter to Satellite 
• Factors in Ground/Ionosphere/Ocean/Satellite (GIOS) Model 
• Ocean Scatter Components 

‒ Wave Height Spectrum and Shoaling 
‒ Fresnel Area Contributions Inside Pulse Illumination Area 
‒ Skip Distance Caustic 
‒ Incident and Scattered Polarizations  

• Observation Satellites (ePOP) 
‒ ROTHR Virginia Data with ePOP 
‒ Features in RTI Spectrum 

• Future Measurements - CARINA 
• Conclusions 

 
 
 



Comparison of Ocean Measurement Techniques 
• Passive Microwave Imagery 

‒ Ocean Microwave Emissivity  
‒ Surface Waves and Foam 
‒ Temperature and Salinity 
‒ Wind Speed and Direction 

• Ocean Radars 
‒ Ground Surface Wave HF Radars – CODAR and WERA 

 Backscatter 
 Wind Speed and Currents 

‒ Microwave Scatterometers 
‒ Altimeters for Topography 
‒ GPS/GNSS Satellite Receivers for Reflectometry  
‒ Imaging Radars (SAR) 

• Advantages of HF GIOS System 
‒ Large Area Coverage 
‒ HF Penetration of Dense Rain in Hurricanes 
‒ Measurement Resolution Matches Computer Models  
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Cyclone Global Navigation Satellite System (CYGNSS) 
Wind Speed Retrieval (Adapted from Cinzia Zuffada, et al., JPL) 

• 8 Low Earth Orbit Satellites with GPS L-
Band Receivers 

• Wind Speed from Delay Doppler 
Mapping (DDM) and Geophysical Model 
Function (GMF) 

• Wind Speed Uncertainty 2 m/s from UK-
DMC data (Gleason, 2013, Clarizia et al., 
2014) and TechDemoSat-1 data (Foti et 
al., 2015); 

• Predicted Wind Speed Uncertainty for 
CYGNSS is 2 m/s or 10% of Measured 
Wind (Clarizia and Ruf, 2015); 

Example of true vs retrieved wind speed for 
CyGNSS Transect crossing the hurricane eye 



Ground-Ionosphere-Ocean-Space (GOIS) 
HF Transmitter Sky-Wave Scatter 

to Low Earth Orbit Satellites 
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Surface 

Ground Transmitter 

F-Layer Ionosphere 

EM Wave 
Scatter 

Satellite Radio Receivers 

Great Improvement: HF Scatter to Satellite-Receiver Provides Large Area Coverage 



HF Propagation Paths in Highly Structured Ionosphere  

02 February 2010, 0501 UT 

7 Point-to-Point Paths with 2000 km Separation 
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Ray Propagation Modes to Satellite with Single F-Layer 
•  O-Mode (LHCP Polarization) and X-Mode (RHCP Polarization) Propagation 
•  O ↔ X Mode Change for Specular Scatter while Bragg Scatter Retains Polarization 
•  Ocean Illumination Region, Incidence and Scatter Angles Shift with Satellite Position  



Ocean Surface Scatter Modes IV 

• Total Scatter Component from Slightly Rough Surface 
‒ Sum of Coherent and Incoherent Scatter by Peake and Barrick [1967] 
‒ Fresnel Zone Scatter Area [Beckmann and Spizzichino, 1963] 
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GOIS 

Specular Reflections from Land and Sea 
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GOIS 1st Order Bistatic Ocean Scatter Theory 
(Barrick 1972) 

• Transmitted Wave 
– Wave Number 
– Power 
– Antenna Gains 

• Polarized Radar Cross-Section 
 
 

• Wave Height Spectrum 
– Gravity Wave Dispersion 

– First Order Spectrum 

– Mean Square Wave Height 

– One Dimensional Temporal Spectrum 

• Radar Equation 
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GOIS Wave Height Wave Number Spectrum 
Derived from Puerto Rico Wave Buoy Data  

Pierson-Moskowitz 
Isotropic Wave Height Model 

(U = 15.7 m/s, α = 0.0036, β = 0.878)    

Buoy Data 

Source: http://www.ndbc.noaa.gov/station_page.php?station=XXXXX 
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GOIS Shoaling Influence on Wave Frequency Shifts 
and Amplitude Increases for Wave Number Spectra 
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GOIS 

GOIS Mapping of Arctic Sea-Ice Transitions 
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Collins, C.O., W. E. Rogers, A. Marchenko, 
and A. V. Babanin (2015), In situ 
measurements of an energetic wave 
event in the Arctic marginal ice zone, 
Geophys. Res. Lett., 42. 

Broken ice: negligible damping of 
dominant waves  

Ice as low-pass 
filter: determined by 
condition of ice 

Photo from R/V Lance before wave 
event, 2010 May 2, 15:48 UTC 

t 
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Factors Affecting Scattered HF Power to Satellite 
• Transmitter Power and Antenna Gain 
• Ray Path Spreading  

‒ Transmitter to Ionosphere 
‒ Ionosphere to Ocean 

• Scattering from Ocean 
‒ Wave Number Spectrum of Ocean Wave Height 

 Wind Velocity 
 Ocean Depth and Shoaling (Wave Growth in Shallow Water) 
 Ocean Current 

‒ Polarization of Incident and Reflected HF Wave 
‒ Scatter Coefficient, σ0 

 Specular/Coherent Scatter 
 Incoherent/Bragg Scatter 

‒ Fresnel Zone Area (∆Phase < λ/2) < Illuminated Area TP C ∆φ R 

• Ray Path Spreading and Refraction to Satellite 



Fresnel  Zone Size and Illumination 
Ellipse in Reflecting Plane < λ/2 HF Phase Change 

zr zSat 

2zr 

z 

y 

x 2xr 

xsat 
xr(θr) 

sθ
γ

0 
x∆

y∆

Ionosphere 

Satellite 

Surface 

Transmitter 

rθ rθ

xs(θr) 

2
0   10 kmA x yπ= ∆ ∆ 



Ocean Scatter Angles and Power 

• Incidence Zenith Angle: 
• Scatter Zenith Angle:  
• Scatter Azimuth Angle:  
• Vertical-Vertical Polarization Ocean Scatter Cross-Section 

 
• Amplitude Along Direct Ray Path from Transmitter to Satellite 

 
 

• Amplitude of Ocean Signals 
 

– Path Divergence through Ionosphere to Ocean: 
 

– Ocean Scatter Power: 
 

– Ray Path Divergence Ocean to Satellite:  
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Multiple Rays for Flat Earth with Biquadratic Layer 
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e-POP 
Payload on Cassiope 

Anti-Ram Face 

Booms Deployed 

SEI 

CERTO 

MGF 

IRM 

RRI 
RAM 

CASCADE Horn 

GAP-O Antenna 

CASSIOPE Satellite with HF Receiver for Ocean Observations 

ePOP Radio Receiver 
Instrument (RRI) 

Covers DC to 18 MHz 
Using 6-m Dipoles 



GOIS 13 April 2015 Ionograms and ePOP Orbit 

Plasma Frequency (Hz) 

Al
tit

ud
e 

(k
m

) 

Lat 18.50 
Long 292.90   
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First Hop  
Ocean Scatter 

X-Mode 
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Range-Time Analysis of Radar Chirp 
16 ms Chirp Period with 8.3 kHz Bandwidth 



GOIS 

13 April 2015, 23:23:44 
Ocean Scatter 

Swoosh 

Direct Signal 



GOIS 

13 April 2015, 23:21:05 

Ocean Wave 
Peak Scatter 



HF Transmission to Satellite by Direct and Ocean Scatter Paths 

Ocean Wave 
Height Spectrum 

Peaks 
Straight Paths for 

Sensor Orbit 
Below Ionosphere 

Refracted Paths for 
Orbit Above Ionosphere 



Naval Center for Space Technology 
Plasma Physics Division  
 

  

Naval Research Laboratory 

  

Complex Action of Radio-
Waves in the Ionosphere for 
Nonlinear Analysis (CARINA) 

• Provide Global Measurements of the Environment 
– World Coverage of E- and F-Regions 
– Storm Time Impacts on Radio Propagation 
– Coupling of Strong Lightning to Ionosphere 
– Impact of Large Scale Ocean Disturbances 
– Low Altitude Satellite Drag Coefficients 

• Demonstrate Utility of Sub Ionosphere Orbit for 
Updating Operational Space Weather Models 

Government and Civilian Applications 

TECHNICAL APPROACH and OBJECTIVES 
• Unique Long Duration Satellite Flying Below the 

Ionosphere 
─ 60 Day Orbit Between 150 and 270 km Altitude 
─ Low-Drag, Tubular Satellite (TubeSat) 

• NRL Science Objectives 
─ Directly Observe Electron Densities Below the F-

Layer Peak  
─ Sample Natural and Radio Electric Fields 
─ Global Map of GPS TEC and Radio Scintillations 

• Space Based Augmentation of Ground Facilities 
─ Ionospheric Modification High Power Transmitters 
─ UHF ISR, HF SuperDARN Radars, Ionosondes 

Naval Research Laboratory 
Washington, DC 20375-5000 

Contact: Paul Bernhardt, PI Email: paul.bernhardt@nrl.navy.mil Phone: (202) 767-0196 

In Situ Investigation of the Lower Thermosphere 

Electric Field 
Antenna 

Ram 
Probe 

GPS 

CARINIA Vehicle Ready for Launch 



OTH Radar Sky-Wave Scatter 
from Ocean to ePOP and CARINA Satellites 
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Coverage Ocean 
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Great Improvement: HF Scatter to Receiver Below Ionosphere Removes Distortions 



Simulated Swoosh for 4.8 MHz to a Receiver in a 200 km Orbit 

Transmitter to Satellite 
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Ocean HF Scatter Conclusions 
• HF Scatter and Ionosphere Propagation Tests 

• Single HF Transmitter Covers > 3000 km of Ocean Surface 
• Single Satellite Orbit Samples HF Illuminated Area 
• Brag Scatter from Ocean Through Ionosphere 
• Doppler Shifts and Group Delays Map to Ocean Surface 

• Theory of Ocean Scatter 
‒ Coherent (Specular) and Incoherent (Bragg) Scatter 
‒ Bistatic Sampling of Global Ocean Surface 
‒ Realistic Models of Wave Height Spectrum Needed for Simulations 

• Experimental Test with ROTHR/VA and ePOP/RRI 
‒ Data Collected in April and August 2015 
‒ Interpretation in Terms of Ocean Surface Parameters 

• CARINA for 200 km Orbit 
‒ Program Delay Vehicle Assembly and Launch Selection 
‒ Planned Tests of the GOIS Concept After Launch 
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